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Abstract
The predictability of a word modulates its acoustic dura-

tion. Such probabilistic effects can compete across linguistic
domains (segments, syllables and adjacent-word contexts e.g.,
frequent words with infrequent syllables) and across local and
aggregate contexts (e.g., a generally unpredictable word in a
predictable context). This study aims to tease apart compet-
ing effects using Naive Discriminative Learning, which incor-
porates cue competition. The model was trained on English
conversational speech from the Buckeye Corpus, using words as
outcomes and segments, syllables, and adjacent words as cues.
The connections between cues and outcomes were used to pre-
dict acoustic word duration. Results show that a word’s duration
is more strongly predicted by its syllables than its segments, and
a word’s predictability aggregated over all contexts is a stronger
predictor than its specific local contexts. Our study presents a
unified approach to modeling competition in probabilistic re-
duction.
Index Terms: Discriminative Learning, Speech production,
Acoustic Duration

1. Introduction
1.1. Probabilistic Reduction

Several probabilistic effects mediate acoustic duration in speech
production. This phenomenon, called probabilistic reduction,
has been observed at multiple levels of the speech signal. [1] de-
scribes probabilistic reduction as ‘a general behavior over mul-
tiple linguistic levels’, where the term ‘level’ or ‘domain’ can
refer to words, but also other linguistic units like syllables and
segments.

Generally, research has shown that unpredictable words are
pronounced longer compared to predictable words, which are
more likely to be reduced. This effect is traceable from vari-
ous probabilistic measures: local ones, such as contextual pre-
dictability, as well as global ones, like average contextual pre-
dictability (informativity) and frequency. These probabilistic
effects have been observed to influence duration at several lev-
els of the speech signal: segments [2, 3], morpheme [4], syllable
[5, 6], word [7, 8, 4].

Because probabilistic reduction manifests itself across mul-
tiple levels of speech elements, it is difficult to trace back to one
clear source. For example, [3] found that in English, the prob-
ability of a segment affects its acoustic duration. However, due
to the embedded structure of speech units - where words com-
prise syllables, and syllables consist of segments - any reduction
that is visible at the word level could be accredited to reduction
effects at the syllable or segment level.

These findings show that possibly conflicting probabilistic
effects may manifest themselves across linguistic domains, such

as a frequent word with infrequent syllables, and across local
(e.g., contextual predictability) and global effects (e.g., infor-
mativity).

1.2. Models of probabilistic reduction effects

Count-based probabilistic measures, such as frequency, can ac-
count for probabilistic reduction effects; however, it is unlikely
that speakers actively track word counts. This raises questions
about how to integrate such measures into models of speech
production. Traditional forward-sequential models, like the
Levelt model [9], struggle to incorporate interactions between
levels of encoding, limiting their ability to address probabilistic
effects. Conversely, models such as the WEAVER model [10],
which utilize ‘activation’ mechanisms for concepts or other rep-
resentations, can more readily incorporate notions of frequency.
The Directions Into Velocities of Articulators (DIVA) model
[11], although focused on motor control, does not explicitly ac-
count for probabilistic effects in speech production.

Building on the challenges of traditional models, recent re-
search has explored novel approaches grounded in discrimina-
tive learning [12, 13]. These approaches, exemplified by mod-
els such as those proposed by [14, 15, 16], have been success-
fully used in production studies [17, 13, 18] while being fully
computationally implemented. Notably, these models do not in-
herently assume any feature representation, allowing the use of
diverse feature sets, a crucial advantage in teasing apart com-
binatorial effects. This flexibility enables dynamic modeling
of reduction effects based on learned cues rather than static,
corpus-derived counts, presenting a psychologically and cogni-
tively motivated approach for understanding on-line processes
during speech production.

Building upon this framework, previous studies [18, 19]
have explored reduction effects through computational imple-
mentations of discriminative learning, such as investigating the
impact of morphology and context on word-final <s> in En-
glish. They found that the duration of <s> is linked to its mor-
phological function. Their model incorporates cues of mixed
domains, e.g., diphones and word lemmas [18]. However, to
the authors’ best knowledge, there is no research on the explicit
comparison of several domains predicting word duration.

1.3. The current study

In this study, we use Naive Discriminative Learning (NDL) to
model probabilistic reduction effects dynamically, reflecting the
competitive nature of cue interactions. Specifically, we train
an NDL model using transcribed interviews from the Buckeye
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corpus of conversational speech1. During training, the model
learns associations between a word and its segments, syllables,
and local context. Throughout learning, the associations are it-
eratively updated by the learning algorithm of NDL, which in-
cludes a cue competition mechanism. To discern the relative
contribution of the domains (segments, syllables, context), we
derive local and global predictors from the association weights
for a regression analysis to predict the word duration from the
Buckeye corpus. Our findings reveal that local predictors ex-
hibit a larger effect size compared to global predictors. Further-
more, regarding the domains, we show that the segment predic-
tors have the smallest effect size, while the syllable and context
domains perform similarly. Our results contribute to clarifying
the importance of certain elements of speech in production, in
particular, the significance of the segment, syllable, and context
domains, therefore further characterising on-line probabilistic
reduction effects.

2. Materials and Method
All scripts for the data processing and statistical analyses are
publicly available on GitHub2.

2.1. Corpus data

Word tokens, along with their respective duration and con-
text, were extracted from the Buckeye corpus of conversational
speech. The corpus consists of conversational speech from in-
terviews with 40 speakers from Columbus, Ohio. Each speaker
has up to four interview tracks with different conversations, all
containing time-aligned phonetic labels and part-of-speech tags.
All word tokens for all 40 speakers were extracted using the
Buckeye package (v1.3)3, which provides word and pause tags
for the corresponding tags in the Buckeye corpus. Pause entries
that received the word class were omitted.

2.2. Naive Discriminative Learning

Naive Discriminative Learning (NDL) is a type of discrimina-
tive learning that aims to model the effects of implicit or low-
level learning, as opposed to logical reasoning processes used
by adults [16]. NDL’s learning algorithm is based on Pavlo-
vian conditioning, which is rooted in human and animal learn-
ing. The model is trained by learning events, which consist of
cues connected to an outcome. Cues are indicators that the out-
come is going to follow. In each learning event, cues can ei-
ther be present or absent. This binary representation determines
whether the connection strength of the cues to the outcome in
the learning event will be lowered or increased (see [20, 16] for
an in-depth explanation of the learning algorithm).

Additionally, cue competition influences the connection
strength of a cue and an outcome. Cues compete against each
other to be the best (most informative) predictor of an outcome.
When one cue appears with an outcome in a given learning
event, but the other cues that have previously appeared with the
outcome do not, their connection strength decreases.

1https://buckeyecorpus.osu.edu/
BuckeyeCorpusmanual.pdf

2https://github.com/ansost/
ModelingProbabilisticReduction

3https://github.com/scjs/buckeye

2.3. Model training and feature extraction

We use pyndl [15], the Python implementation of NDL. This
implementation considers words as outcomes, with their re-
spective syllables, segments, and adjacent context words serv-
ing as cues. Each learning event within our model comprises
the word as an outcome, along with its associated segments,
syllables, and context (including one word before and after).
Since the objective of our study is not to enhance the accuracy
of an NDL model in predicting words but rather to explore the
model’s learning end state, we trained the model on the entire
dataset without any splits for testing or development. The de-
fault parameters of NDL were used as it is the standard practice
for NDL modeling [18]: learning rate (α = 0.001), maximum
connection strength (λ = 1.0), and the amount of increase and
decrease (βi = 0.1 (reward), βj = 0.1 (punishment)).

A finished NDL model is represented by a weight matrix,
wherein each cell represents the connection strength (weight)
from a cue to an outcome. This weight matrix yields various
measures, which have previously been used to predict diverse
phenomena, ranging from decision time latencies to word dura-
tion and other linguistic behaviors (see [16] for an overview).

Prior The Prior of an outcome serves as a metric of its
prior availability or entrenchment within the model [20]. Pre-
vious studies have identified a correlation between Prior and
frequency [20] and have effectively used Prior to predict dura-
tion reduction [19, 18]. For our regression analysis, we com-
pute four Prior predictors: Prior Syllable, Prior Segment, and
Prior Context are derived by summing the absolute connection
strengths of all cues from the respective domains to the given
outcome, similar to a column 1-norm [20]. Additionally, Prior
All is computed by summing all cues, regardless of domain, for
a particular outcome.

Activation The Activation of an outcome shows how
strongly a given set of cues supports it. In contrast to the Prior
measures, Activation only considers local support. This predic-
tor has also successfully been used to predict duration reduction
[19, 18]. Activation is calculated by summing the connection
strengths of cues to an outcome in a given learning event, en-
compassing the connection strengths of cues from each domain.
The four resulting predictors are Activation All, Activation Seg-
ment, Activation Syllable, and Activation Context.

3. Regression analysis
3.1. Dependent variable: Duration

The dependent variable is the word duration generated by the
timestamps in the Buckeye corpus. Impossible duration values
were removed (< 0 s or > 10 s). The variable in milliseconds
was log-transformed to the base of 10.

3.2. Fixed effect variables: Control variables

A number of control variables were included as they have been
found to influence word duration independently (e.g., [18]).

Word length Word length, as measured by the number
of segments and syllables, was included to serve as the base-
line duration. The segment transcriptions were generated using
DeepPhonemizer (v0.0.17)4 and then syllabified using a modi-
fied version of the syllabifier from the P2K toolkit5.

Speaker and interviewer data Interviewer gender, speaker
gender, and speaker age (‘young’: < 40 and ‘old’: > 40) were

4https://github.com/as-ideas/DeepPhonemizer
5https://sourceforge.net/projects/p2tk/
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included in the Buckeye documentation [21]. They were coded
as binary variables – interview gender (reference level: female),
speaker gender (reference level: female), and speaker age (ref-
erence level: young), with the contrast coding (-0.5, 0.5).

Part of speech The syntactic category for each token was
coded using the provided part-of-speech tags from [21]. After
excluding grammatical categories, four lexical categories (ad-
jectives, verbs, nouns, and adverbs ) remained. This variable
was coded using the target encoding scheme [22], which takes
the mean of the dependent variable (duration) for each category
to yield a single continuous variable.

Speech rate Speech rate was calculated as the number of
syllables per utterance divided by the total duration of the utter-
ance. An utterance is defined as one conversational turn marked
by pauses or other interruptions. Pauses tagged in the corpus
and the pauses omitted from the word token were used as utter-
ance boundaries.

3.3. Fixed effect variables: NDL variables

The variables outlined in Section 2.3 were used as fixed effects.

3.4. Statistical procedures

A linear mixed-effects model was used to examine how well the
NDL variables predict word duration using the lme4 package
(v1.1.31) [23] in R (Version 4.2.2) [24]. Speaker and Word were
included as random effects. All continuous variables were z-
transformed to enable us to compare the relative effect size β
of the predictors. First, two models were fit to test whether
there is an a-priori difference between Prior and Activation split
by domain and Prior and Activation over all domains. The by-
domain model, which is more fine-grained, has a better fit in
AIC model selection (∆AIC=1032.4). We, therefore, focused
on examining the by-domain model.

Starting with the most complex model, a series of nested
model comparisons was performed to determine the best model
structure. Prior Segments was the only NDL variable that
did not significantly improve model fit (∆AIC=2)6 and was
excluded. The regression structure of the best model is given
below in lmer syntax: Word duration ∼ (1 | Speaker) + (1 |
Word) + Segment count + Syllable count + Speaker gender +
Interviewer gender + Speaker age + Part-of-Speech + Speech
rate + Activation Context + Activation Syllables + Activation
Segment + Prior Context + Prior Syllables

The final model underwent model criticism as follows.
2.1% of the data points were excluded as their residuals were 2.5
standard deviations above and below the mean residual value.
The fixed effects of the best model are reported in Table 2. In
order to evaluate the collinearity of our predictors, we computed
the Variance Inflation Factor (VIF). Our VIF is < 10, which in-
dicates no serious issues of collinearity [26]. Table 1 summa-
rizes the pairwise correlations between all NDL variables and
word duration. They revealed that all NDL variables, as ex-
pected, negatively correlate with word duration, ranging from
-0.10 to -0.51, suggesting a reduction effect.

4. Summary of the Results
The effect sizes (β) of all predictors can be seen in Table 2.
The predictor Activation Syllable has the largest effect size
(β = -3.115 ×10−2, p < 0.001), followed by Prior Con-

6see for example [25]

text (β = -2.880×10−2, p < 0.001) and Activation Context
(β = -1.980×10−2, p < 0.001). Activation Segment (β =
7.930×10−3, p < 0.001) and Prior Syllable (β = -1.810×10−2,
p = 0.0633) have the smallest effect size. The positive effect on
duration by Activation Segment is likely caused by a suppressor
effect7 since the correlation analysis shows that it is negatively
correlated with word duration (-0.22, see Table 1).

5. Discussion
5.1. The role of distinctiveness

Both the segments and syllables are phonological properties of
the word that they predict, and therefore, one could expect them
to have similar predictive power. However, syllable predictors
have a stronger effect on duration than segment predictors for
both Activation and Prior measures. This may be due to the fact
that there is a smaller segment inventory than syllable inven-
tory. As a result, segments are less discriminatory when predict-
ing words since they have many connections, but few of them
are particularly distinctive. Conversely, because syllables are
more discriminatory than segments, they are less affected by
cue competition and more strongly predict a given word. For
languages with a different syllable and segment inventory size,
we expect this effect to vary accordingly.

Between the syllable and context predictors, it is difficult
to discern which domain is a ‘stronger predictor’ of word dura-
tion. Overall, there are far more context cues than there are syl-
lable cues. Following the reasoning of the previous paragraph,
this would mean that the context would be more distinctive than
the syllables. However, if cues are too distinctive, it equally
presents a problem as when they are not distinctive enough. In
this case, there may not be enough meaningful/strong connec-
tions to the word.

5.2. Local and global contexts

As outlined in the introduction, previous research suggests a dif-
ference between predictability measures from local and global
contexts. This is mirrored in the NDL predictors Prior and Ac-
tivation. Prior takes into account all cues the model has seen
and is therefore very broad, whereas Activation considers the
specific context and the phonetic makeup of a word. Since Ac-
tivation is more specific than Prior, one could expect it to yield
better predictions than Prior. It is unsurprising that using more
specific cues leads to more accurate predictions, making an Ac-
tivation measure the strongest predictor. This is shown in the
performance of the segment and Activation predictors. Despite
the poor predictive power of the segment level in general, Acti-
vation Segment is stronger than Prior Segment. Similarly, this
may explain why, even though both Prior Context and Activa-
tion Context have stronger predictive power than Prior Syllable,
Activation Syllable emerges as the strongest predictor.

Taken together, these observations suggest that the syllable
domain is the strongest predictor of word duration, followed by
the context domain and then the segment domain.

5.3. Limitations and future directions

While our study has uncovered a stronger impact of syllable
predictors compared to segment predictors, it is important to
acknowledge the potential influence of the design constraints

7One diagnostic of a suppressor effect is whether the model esti-
mate is in the same or opposite direction as the correlation between the
dependent and independent variable.
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Table 1: Correlation values all NDL measures and duration.

Activation Activation Activation Prior Prior Prior
Segment Syllable Context Segment Syllable Context Duration

Activation Segment 1 0.56 -0.14 0.41 0.43 -0.02 -0.22
Activation Syllable 0.56 1 -0.13 0.55 0.84 0.34 -0.51
Activation Context -0.14 -0.13 1 0.16 0.02 0.21 -0.10
Prior Segment 0.41 0.55 0.16 1 0.82 0.76 -0.35
Prior Syllable 0.43 0.84 0.02 0.82 1 0.68 -0.50
Prior Context -0.02 0.34 0.21 0.76 0.68 1 -0.35
Duration -0.22 -0.51 -0.10 -0.35 -0.50 -0.35 1

Table 2: Fixed effect summary for the best model.

Variable β (10−2) SE (10−3) p-value

Intercept 244.8 3.502 < 0.001
Segment count 6.120 1.494 < 0.001
Syllable count 3.462 1.409 < 0.001
Speaker gender -0.745 5.287 0.1672
Interviewer Gender -0.315 5.286 0.5552
Speaker Age 0.751 5.286 0.1641
POS 1.445 0.668 < 0.001
Speech Rate -7.139 0.359 < 0.001

Activation Context -1.980 0.483 < 0.001
Activation Syllables -3.115 6.824 < 0.001
Activation Segments 0.793 1.854 < 0.001
Prior Context -2.880 5.894 < 0.001
Prior Syllables -1.810 9.746 0.0633

inherent in Naive Discriminative Learning. NDL’s binary rep-
resentation of cues does not account for multiple occurrences of
the same cue within a learning event, which may adversely af-
fect the predictive power of the segment cues. Future research
could address this limitation by encoding the position of each
ngram (similar to ‘positional segment frequency’ by [27]).

To further examine cues from other domains, Linear Dis-
criminative Learning [16] can be used to examine the semantic
domain by using semantic vectors as cues. Furthermore, lower-
level linguistic units can be included, such as using distinctive
features [28].

Additionally, expanding the scope of investigation by using
multiple and larger corpora could enhance the replicability and
generalizability of the findings presented in this paper. This in-
cludes an extension of this analysis to other languages where
probabilistic reduction effects have been observed but are mor-
phologically more complex, such as Japanese [1] and Kaqchikel
[29], which have different syllable-to-segment inventory ratios
compared to English and a different definition of wordhood.
Specifically, they could offer valuable insights to disentangle
effects stemming from these linguistic domains.

Finally, Prior and Activation were used as local and global
measures in this study. It is to be examined whether our findings
can be replicated using count-based probabilistic measures.

6. Conclusion
This study presents a cognitively motivated approach to mod-
eling probabilistic reduction effects dynamically, as result of
learning. Leveraging predictors derived from a Naive Discrimi-

native Learning model, we successfully predicted word duration
in the Buckeye corpus.

Our analysis revealed that local predictors exhibited a
stronger influence on word duration prediction compared to
global predictors. Furthermore, when examining the segment,
syllable, and context domains, predictors derived from segment
cues displayed the least explanatory power for predicting word
duration compared to other cues.

Our results contribute to clarifying the importance of cer-
tain elements of speech in probabilistic reduction in produc-
tion, in particular, the significance of the segment, syllable, and
context domains, therefore further characterising on-line prob-
abilistic reduction effects. Our results could be incorporated
in models of speech production by, for example, weighting the
contribution of specific cues for shortening duration.
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